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Abstract

Military combat weapon systems are becoming increasingly reliant on advanced
multiprocessor computer architectures to execute powerful real-time signal
processing algorithms. These multiprocessor computer architectures must meet
stringent system reliability, availability, and maintainability requirements. This
paper addresses software-based fault tolerance techniques that can leverage

inherent capabilities of multiprocessor computers to minimize overall system

hardware redundancy requirements and provide quick, flexible fault detection,
isolation, and recovery. An AEGIS SPY radar signal processing system example
is used to illustrate fault tolerance approaches being jointly developed by MIT
Lincoln Laboratory and Lockheed Martin Naval Electronic and Surface

Surveillance.
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The above picture illustrates an example TBMD littoral environment scenario with AEGIS
systems attempting to perform exoatmospheric and/or endoatmospheric reentry vehicle intercept.
The AEGIS system must operate at very high availability rates, i.e., low failure rates combined
with quick recovery or equipment replacement times, while trying detect, track, and intercept
ballistic missiles despite enemy countermeasures such as ground-based and airborne jammers.
Real-time execution of the necessary signal processing algorithms is expected to require total
processor throughput exceeding 1 Gflops/s (one-billion floating point operations per second).

Commercial off-the-shelf (COTS) microprocessor-based Massively Parallel Processing (MPP)
systems have been shown to be capable of meeting TBMD mission-related throughput and
latency requirements. In addition to exploiting the high performance of COTS systems, the
government is not required to fund chip design, foundry construction, and production which can
exceed one-billion dollars. MPP systems present the opportunity to implement new software-
based approaches to processor fault tolerance by using spare processor elements or multiprocessor
boards to replace failed processor(s) via mechanisms embedded in high-level software constructs.

This talk will focus on software techniques that will achieve high level of reliability and
availability.
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Military combat systems can be extremely complex as depicted by a recent
AEGIS Destroyer combat system architecture in the above figure. Potential
failures can occur in weapons subsystems, control computers, special-purpose
signal processors, and communications systems and networks. Fault tolerance
strategies that can meet system reliability and availability requirements typically
consist of the combination of high levels of redundancy with the quick isolation
and replacement of faulty components.

4 Unclassified
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The fault tolerance process begins with the detection of a system or processor
fault using monitoring and built-in test programs designed to check system
performance. If faults such as failed data channels, failed
processors/boards/cabinets, erratic communications, or computational errors are
detected, programs and indicators are used to isolate and locate the fault. The
fault could yield degraded system performance (e.g., require operation on fewer
radar pulses) or result in complete system failure.

To recover from the fault, a board could be hot swapped in or a redundant
system can be switched in. Fully redundant processor systems have several
disadvantages: larger footprints, extra weight, increased power requirements, and
the complete loss of one system during offline fault recovery/maintenance.

To complete the process, off-line maintenance would be performed to determine
the cause of the fault and perform the necessary repair.
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The upper left-hand figure depicts what is commonly referred to as Moore’s
Law, i.e., computational power doubles approximately every 18 months. This
particular example is for the Motorola Power PC family, a set of processors
currently popular in Massively Parallel Processing systems. Improved processor
performance enables more computational power per cubic foot (particularly
important for size-constraint applications such as missile seeker processors), the
implementation of advanced radar and discrimination algorithms (e.g., wideband
high-range radar resolution necessary for exoatmospheric target discrimination
and superresolution range-doppler image processing), and the implementation of
ultra-high-performance parallel processors as depicted in the upper right-hand
figure.

These parallel processors systems will require the development of new fault
tolerance strategies to exploit inherent processor redundancy and system
reconfiguration capabilities to replace current hot swap/redundancy practices.
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To further illustrate fault tolerance concepts, we present two examples in this
section. The first example shows the potential for faults in MPP systems. The
second example demonstrates the implementation of fault tolerance strategies .

Space-time adaptive processing (STAP) is a two-dimensional adaptive filtering
technique that mitigates jammer and clutter interference in order to maintain
required target detection performance. Analog antenna signals are digitized,
downconverted to complex baseband, and passed through pulse compression
filters. Adaptive spatial and doppler filter is performed and the output data is
passed to detection algorithms.

The above figure shows how an MPP system can be configured to operate on
two data sets simultaneously (beamformer/detector paths 1 and 2). The scheduler
assigns different tasks to the different processors and determines when the task
can be executed. In addition to obvious use of task parallelism, MPP systems can
be configured to operate on data sets distributed over several processors. For
example, matrix addition operations lend themselves to data parallelism.

However, this architecture is succeptable to several faults including
communications dropouts, failed or erratic data channels, and failed hardware.

8 Unclassified
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When such faults occur, there are different approaches that can be utilized to
maintain system availability. First, if a communications error occurs, the
scheduler will notify all subsystems of a potential problem with the data. Second,
if monitoring indicates that an input data channel contains errors,

the channel can either be dropped which might resuit in degraded performance.
Third, if an error occurs in the adaptive beamformer and insufficient
computational resources are available, the processor might be reconfigured to
operate on only one data set at a time. Finally, if a processor associated with
detection algorithms fails, the system can remap this function to a spare
processor.
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This chart addresses some basic terminology associated with system reliability,
maintainability, and availability concepts. The left-hand side of the chart shows a
portion of the timeline where the system is available to perform some or all of its
functions, i.e., it is available. Since failures are nondeterministic, statistical
average measures (mean time between events) must be used to assess
performance. For a combat weapons system, the average availability time is
expected to be on the order of several months. The goal in any fault tolerance
strategy is to maximize the average time when the system is available and
minimize the average time when the system is not available. The techniques
illustrated in the next several charts, when used in conjunction with MPP
systems, can achieve this goal.

The example timeline itself follows the system’s availability from power up
through an initial failure detection and recovery. When a mission-critical
unrecoverable failure occurs, the system will not be available and off-line
maintenance must be performed.
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The above figure depicts the AEGIS Common Signal Processor architecture. The
radar control computer oversees system, task, and data flow control processes.
Analog radar data is operated on by the front-end processor and is then passed on
to various processor clusters.

For illustrative purposes, an exploded view of one processor cluster is presented.
Each processing cluster contains several partitions where some are allocated to
real-time algorithm execution and others are kept in reserve in case of partition
failure. Each cluster contains a control processor, processing nodes, and spare
processing nodes. The control processor receives instructions

from the radar control computer.

We will now proceed with several examples that demonstrate how this fault
tolerance architecture can deal with certain types of faults.
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We’ll use a three-partition cluster example to illustrate how a cluster can have its
partitions dynamically reconfigured to maintain availability despite multiple
processor faults in one partition. At the beginning of run-time execution, the
system has mapped computations to Partitions 1 and 2 and Partition 3 has been
kept in an idle state as a hot spare. After a certain time, faults in two Partition 1
processor elements are detected. The system allocates some time to determine if
Partition 1 can recover from the fault. This corresponds to the red section
associated with Partition 1timeline.

12 Unclassified
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In the next part of this example, we’ll assume that Partition 1 will go into a fault

recovery mode. The radar control computer must now act to reconfigure the
cluster system to maintain availability. The appropriate commands are sent to
and through the Common Signal and Cluster control processor. Within a time

frame ranging from 0.1 to 1.0 seconds, these commands will be executed so that
the cluster will be reconfigured to perform the computations on Partitions 2 and
3. Reconfiguration commands include awakening Partition 3 from its idle state,
reinitializing Partitions 2and 3 to operate on the appropriate data, and execute

offline diagnostic tests on Partition 1 to ascertain if the fault is or is not

recoverable.

13
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We continue with this example by assuming that the offline diagnostics indicate
that the fault is recoverable, commands are given to correct and test this
partition, and the control processors are notified that the partition is available
again, this time as a hot spare. As indicated by the upper time line, Partition 1 is
now in the idle. The system has now recovered from the fault with minimal
down time and resumes its fault monitoring process. Thus, an overall high

availability rate can be maintained.

As will be discussed in the next section, high-level software commands in the
Application Programmer Interface (API) will contain the necessary functionality
to automatically deal with fault conditions such as one described in this example.
Embedding fault detection/isolation/recovery functionality in high-level software
will simply the programming task by hiding some degree of complexity and also
result in a reduction in the number of lines of code (hence, cost).

14
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Let’s return to the state where the partition reconfiguration commands have been

Unclassified

given by the control processors and Partition 2 has been placed in the run state.
|
|
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Now let’s assume that an unrecoverable fault has occurred. The failed partition
would then be subjected to offline testing in order to isolate the fault. One
possible action would be to hot swap in another board which would then be
result in a new cluster configuration with it as the hot spare. If another
unrecoverable fault occurs before a partition replacement or repair, the system

would have to accept either degraded performance or shut down the entire
cluster.

Through these examples, one can clearly see the benefits of software control of

fault tolerance for multiprocessor systems. The amount of processor redundancy
would be principally determined by availability requirements, processor system
size, weight, and power constraints, and system cost.
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In the previous examples, we looked at a higher level of fault tolerance
processing which operated at the partition level, i.e., partitions were monitored
and recovery procedures were confined to partition functionality. However, our
multiprocessor partition architecture can provide a finer granularity of fault
detection, isolation, and recovery.

Let’s first assume that we have a radar processing task that requires a minimum
of four processor elements (denoted A, B, C, and D) and well-defined data flows
flow as indicated by the arrows. The data and required processing flow for each
radar dwell is mapped to four of six available processors in each partition as
illustrated in the above figure. A spare 6-processor partition is kept available for
reconfiguration.

This fixed resource allocation and task scheduling process enables processing
resources and communications paths to be setup during initialization, simplifies
scheduling and minimizes overhead, and allows fault reconfiguration at high
granularity (which requires simpler software control).

However, we are not maximizing the efficiency of this processor architecture by

keeping a rigid task schedule and processor resource allocation (many processors
can be idle.

17 Unclassified
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Node

If we reduce the granularity to single processor node, we can achieve the
ultimate in resource allocation and reconfiguration. In the above figure, we
allocate the resources at task run time. The data flow is potentially quite different
from a fixed initial resource allocation case. Note that mapping and data flow
for the three radar dwells. Much better processor utilization is expected with this
very low level of granularity along with greater flexibility to reconfigure around

a fault. Spare processing nodes as opposed to partitions can be brought in when a
fault occurs.

The increased fault recovery and resource allocation capabilities do require
additional communications overhead and increased software control complexity.
Both partition management schemes addressed in this paper will be evaluated as
part of the joint Lockheed Martin/Lincoln Laboratory development program.
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The Application Programmer Interface (API) provides a portable, high-level
software means to address task execution, resource allocation, and fault
detection. Portability is important because due to the rapid pace of computational
processing performance improvements along with the long life cycles of military
systems, software and hardware architectures can no longer afford to be point
solutions. In addition, portability implies that the API can be moved from
platform to platform with minimal changes thus serving a wide range of
applications (e.g., the same API can be used for a ground-based radar as well as
SPY).

We approaching API development by leveraging previous successful efforts in
this area. New technology will be developed to deal with dynamic tasks and
mappable data structures. Dynamic tasking was addressed in the previous
section. Proper mapping of data structures such as vectors and matrices (common
in multichannel radar signal processing systems) will need to be explored in
order to determine how to best achieve maximum efficiency and
reconfigurability.
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To provide a portable, fault tolerant capable API, we plan to develop common
middleware. Let’s first describe the applications which sit at the highest level.
The applications call functions found in the middleware just as one would call
BLAS or LAPACK routines if writing Cor Fortran programs. The middleware
then executes machine-specific code that has been optimized for a particular
hardware architecture. Thus, at the highest level, the programmer is isolated

from the machine-specific code which results in a much higher degree of code
portability.

The principal common middleware development goals are: 1) to use common
standards to promote portability, 2) ensure that performance is maintained, 3)
incorporate fault detection, isolation, and recovery capabilities, 4) incorporate
fixed and dynamic scheduling, and 5) create a highly productive code
development environment.
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The above chart depicts the functionality that will be included in the

APIL These functions range from operating system to signal processing. Both the
Message Passing Interface (MPI) and Vector, Signal,and Image Processing
Libraries (VSIPL) are vendor-supported standards. Parallel VSIPL is currently
under development and will most likely become a standard in the near future.

In particular, the AEGIS CSP API requires portability to support life-cycle
maintenance, multiple processors for high throughput, low latency operation, the
ability to move large data blocks to perform range and doppler processing, and
distributed computation capability in order to execute complex real-time signal
processing algorithms.

This API development effort will aim to provide portability, performance,
improved productivity, and robust operation. The resulting software architecture
will enable highly reliable and available multiprocessor systems capable of
meeting military signal processing challenges .
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¢ Combat weapon systems require fault tolerance strategies to
provide high reliability/availability

* Joint Lockheed Martin NE&SS/MIT Lincoln Laboratory effort
addressing
— Dynamic reconfiguration/graceful degradation

— Portable software architectures that embed fault tolerance
capabilities

— Planned AEGIS radar/processor system demonstration in late 01

New fault tolerance approaches are required to exploit
computational and dynamic reconfiguration advantages
provided by massively parallel processor architectures

T Unclassified
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The examples in this paper have shown that new fault tolerance approaches are
necessary to support the advanced capabilities provided by Massively Parallel
Processors. These approaches can leverage the inherent processor redundancy
and reconfiguration flexibility provided by MPPs to achieve very high system

availability levels which are necessary for combat weapons systems. The API

will be designed to provide performance, portability, and productivity. Lincoln

Laboratory and Lockheed Martin will be jointly developing these approaches

over the next year as part of an AEGIS radar processor risk-mitigation program.
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